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Plasma kinetic theory is applied to the RHIC electron beam cooler to examine the 
potential for plasma microinstabilities. Two sources of “free energy” are identified: 
density and temperature gradients. It is shown that the RHIC electron beam cooler is 
stable (based on present parameters) against any plasma microinstabilities that can be 
driven by either of these sources during an interaction period. 
 
I Introduction 
 
Before stability analysis is performed on any plasma (i.e., “plunging” into calculations), 
sources of free energy must be identified. If there are sources of free energy, potential for 
instabilities exists. In the bunch rest frame of the RHIC electron beam cooler, there are 
density gradients in a radial direction with a longitudinal magnetic field, which may drive 
drift type modes; longitudinal forces that may affect the velocity distribution function; 
and, anisotropic velocity distribution that has the potential to drive instabilities. Plasma 
kinetic theory is used to evaluate the potential for instabilities that may be driven by these 
sources of free energy. 
   
Unlike atomic physics where the Schrödinger equation can be used to define and become 
the basis for solving a problem, plasma physics does not have a master equation. Instead, 
a set of equations must be chosen based on the best guess as to which equations are most 
relevant. There are two basic levels of theoretical description: (1) Microscopic 
description, also referred to as plasma kinetic theory, which is based on phase space 
distribution of plasma particles. One of the main virtues of plasma kinetic theory is the 
natural manner in which finite-temperature effects are included. (2) Macroscopic or fluid 
description, which is based on moments of the Liouville or the Boltzmann equations, 
some of Maxwell’s equations and Ohm’s law. Although microscopic quantities are 
difficult to measure, they frequently play a dominant role in determining macroscopic 
properties. The choice of equations in either theory is based on the problem to be solved. 
 
By its definition, plasma is a collection of particles whose statistical properties are 
determined by multiple Coulomb interactions. Mathematically, it can be expressed as 

, where  is particle density and is the Debye length. Basically, there should 
be many particles in a Debye sphere to have plasma collective effects. The possibility of 
plasma collective effects is what distinguishes plasmas from other collections of charged 
particles. In the RHIC E-Cooler expected particle rest frame (PRF) values
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In addition to meeting the general requirement for plasma collective effects, the Debye 
length must be smaller than a physical system for plasma kinetic theory analysis to be 
valid. In the PRF of the RHIC E-Cooler bunch lengths for ions and electrons are 30 
meters and 3 meters respectively. Bunch radius for both ions and electrons is 2 mm. 

isλD
1 3.477 mm for ions and 2.381 mm for electrons. Thus, is smaller than the bunch λD



diameter. Finally, attention must be paid to ensure that analyzed phenomena occur within 
appropriate time scales. Interaction time J in PRF frame is 10-9 sec.    
 
II Elements of Plasma Kinetic Theory 
 
Modern plasma kinetic theory has its foundation in the Vlasov2 model of plasma waves. 
In this model particle discreteness is lost, i.e., the number of particles N , while their 
charge and mass q and m 0. But qN and mN remain constant. It is as if particles are 
being chopped into smaller and smaller fragments to reach the so-called “mush” limit. 
Since the plasma does not have discrete particles in this limit, the plasma is collisionless. 
However, it is not correlationless. The various components (particles) of the plasma 
interact with each other via waves, i.e., their electric fields. 
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Like any many-body system, a chain of statistical equations, which could or could not be 
closed, can describe a collection of charged particles. However, in plasma (where 

) taken to the mush limit, statistical chains of the Liouville equations can be 
simplified by neglecting terms of the order of 1/ . To this order the kinetic equation 
for the j
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Where fj is the distribution function for jth species. Variables with arrow above them 
denote vector quantities. Equation 1 is called the Vlasov equation. The interaction among 
the particles appears through E, the average electric field, which can be computed self 
consistently through Maxwell’s equations.  With 
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Where ε is the permittivity. Equations 1 and 2 can, in principle, be used to determine 
stability due to a small perturbation in f r v t( , , )v v .  
 
This procedure can be generalized to include externally applied and internally generated 
magnetic fields. 
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Where J and ρ are current and charge density respectively. B represents magnetic field. 
Equations 3,4,5, and 6 form a closed set. A major advantage of this theory is the ease 
with which non-neutral plasma, or even single species plasma can be treated.  
 
Landau3 was the first to solve the Vlasov equation. He considered only electrostatic 
modes in infinite homogenous plasma with no external electric or magnetic fields. 
Landau examined the effect of a small perturbation on the distribution function 

that results in a small perturbed potential ~ ( , , )f r v tj
v v ϕ  that either damps (stable modes) or 

grows (unstable modes). Mathematically, equations 1 and 2 are solved as a linearized 
initial value problem. Both equations are linearized with 
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~( , , )f r v tv v and ϕ  are the only unknowns in equations 7&8. To solve these equations, they 

are next reduced to algebraic equations by Fourier-Laplace transforms. After solving the 
algebraic equations for ϕ , transform inversion must be carried out (in principle) to 
determine the system response. There is, a problem with the Laplace inversion, since its 
integration contour must be above all poles resulting in exclusion of the v

singularities. Landau developed the technique for analytical continuation of the 
contour, which was a major breakthrough. Now time asymptotic response can be found 
by considering the highest pole, which due to the zero of the denominator of 

v
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is basically the permittivity. This limit define the following dispersion relation, 
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Where is the wave number,
v
k ω p is the plasma frequency, and the frequencyω can be 

complex.   
To examining stability properties of a system, equation 9 must be solved for the system 
distribution function . Solutions for f vo( )v ϕ  are in the form of ϕ ϕ ω= − − •~ (e i k v )t

v v

. Complex 
values of ω  indicate that wave growth or damping occurs, depending on the sign of Im 
(ω ). Landau showed3 that waves are damped in plasma with a Maxwellian distribution 
function, thus explaining observed damping of waves in an electron tube.  
 
III Dispersion Relation for E-Cooler Electron and Ion Bunches 
 
Equation 9 is valid for infinite homogenous plasma with no external electric or magnetic 
fields. To adapt equation 9 for our case of interest, it is best to use an equation that 
includes external magnetic fields that is particular suitable for systems with cylindrical 
geometry4, which is sometimes referred to as the Harris dispersion relation. Harris 
derived this equation to ease micro-stability analysis in magnetic mirror device5, whose 
diameter to length ratio is of order unity. Hershcovitch modified that equation and 
adapted it to cylindrically shaped plasma systems6,7,8,9 (gated electron traps, and EBIS 
devices) that are characterized by large lengths and tiny diameters. In particular, EBIS 
bares an additional similarity to PRF RHIC E-Cool bunches with its different lengths of 
electron and ion columns. The most suitable dispersion relation9 for our system is 
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Where ′R  sometimes referred to as the propagator is 
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Parallel and perpendicular is with respect to the magnetic field. Summation over species 
is over ions and electrons; J in equation 10 is a Bessel function (not current density).  
 
Based on ion bunch and cooler parameters as well as assuming Gaussians for spatial 
radial distribution functions, ion and electron distribution functions are 
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Where R is the bunch radius. Substituting equations 11 into equation 10 yields (after 
some manipulations and after dividing numerator and denominator of the velocity 
exponent of the electron distribution function by T and of the ion distribution function 
by T ; and noting that T  for electrons), 
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Where and ( )b k vj thj= ⊥ ⊥0 5

2
. / Ω j ( )ω∗ ⊥= −j thejk v R0 5 2. / Ω j is the frequency associated with 

“drift” waves. It should be noted that the perpendicular wave number is in the azimuthal 
direction due to the cylindrical symmetry of the system. Z is the well-known plasma 
dispersion function10. Z function properties, its tabulation and power series expansion can 
be found in reference 10, while its asymptotic behavior11 and other approximations12 
were derived later. The Z function is defined as, 
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wave phase velocity to thermal velocity (obviously x & y are the real and imaginary 
arguments). In our case, ς >>1, hence, the asymptotic series expansion of reference 11 
can be used.  
 
Although equation 12 is a dispersion relation in terms of known Bessel and plasma 
dispersion function, it cannot be solved analytically in its present form. In the next 
section, physical arguments are invoked to eliminate modes (and hence terms in the 
dispersion relation) that could not possibly occur.  
 
IV Mode Analysis 
 
Before proceeding with eliminating terms in equation 12, justification is made for the 
exclusion of axial electric field effects. Electric fields can be incorporated by adding a 
term in the denominator of the propagator as done for internal fields13, externally induced 
fields7, or as it was very cleverly done14 by adding an electric field term to distribution 
functions that modifies self-consistently. Utilizing any of these methods to include the 
axial electric fields would significantly complicate an already complex problem. But the 
electric field was shown to have a minute effect15 on the ion parallel (or electron) energy 
spread. Therefore, it is simpler to use quasi-linear argument to claim that those electric 
fields have insignificant affects on particle orbits (regarding the propagator), and 
negligible effect on the distribution functions. Should the later become even slightly 
significant (note that a hurricane is a slight deviation from a Maxwellian), it raises the 



potential for beam instabilities. However, these instabilities have density threshold that 
well above our densities.  
 
Next various frequencies (modes) are evaluated and compared to bunch parameters to 
determine their relevance. To be consistent with previous computations15, the following 
parameters are considered: ion and electron bunches that 30 meters and 3 meters long 
respectively, bunch radius for both ions and electrons is 2 mm. For a 10 nC electron 
bunch, the electron plasma density is 1.66x1015 m-3, and the electron plasma frequency 

Hz for a cylindrically shaped bunch (the values are 2.2x10ω pe x= 366 108.

ω pe x= 4 2 1.

15 m-3 

and Hz for ellipsoid electron bunch). In either case the oscillation period is 
over 2 nsec, which longer than the 1 nsec interaction time. For 10

08

9 (ions per bunch) fully 
stripped gold ions, Hz. In a Tesla magnetic field, the ion and electron 

cyclotron frequencies are Hz and Hz (28 GHz). Thus, only the 
electrons are magnetized (by plasma physics definition requiring 

ω pi x=19 106.

Ωi = 61. x106 Ωe x= 2 8 1010.
Ω >> frequencies like 

collisions or in this case 1 / τ ).  
 
Since ions are unmagnetized, ω∗ i can be neglected. For electrons  (for a 
transverse 1 KeV electron temperature), therefore, all drift modes can be neglected (since 
ions are not even magnetized). Hence, no micro-instabilities driven by density gradients 
can occur, since the interaction time is shorter than oscillation period or growth rate of 
any of those instabilities. 

ω∗ =e x376 108.

 
Therefore, the last remaining source of free energy that could drive a micro-instability is 
velocity space anisotropy. If for both ions and electrons, equation 12 would yield 
only modes that are either oscillatory or damped, since Im

T T|| >> ⊥

( )ω < 0  for all values. 
However, in our case T  for electrons. T||⊥ >>
 
With all these approximations, assuming that both ions and electrons have bi-Maxwellian 
energy distributions and noting that  for electrons, equation 12 becomes, T⊥ >> ||T
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Both transverse and longitudinal ion temperatures are less than 1 MeV with expected 
velocities of less than 4x105 m/s, which is equivalent to a velocity of about 1 eV 
electrons. Due to the geometry,  (for ions ) is expected. Therefore, ion 
Landau damping can be neglect. Next, angle θ is defined to be the angle that the k vector 
makes with the magnetic field. With these assumptions, equation 13 becomes, 
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Terms in equation 14 are grouped in such a way that if the oscillation frequency is near a 
cyclotron harmonic, all terms in the summations other than that “n” number can be 
neglected. Also, it is important to note that whereb k e≅ ⊥( ρ 2) ρe is the electron gyroradius. 

In our case largest k
rplasma

⊥ = ≈
1

2 4.
2 mmm-1. Since for 1 KeV electrons , ρe x m= −7 5 10 2.

k e⊥ ρ is usually a small number.  
 
Equation 14 is next analyzed in the limit of small k e⊥ ρ for resonant and nonresonant 
instabilities. For the nonresonant case, I b bn( )exp( )−  is numerically small (observing that 
for n ,  does not exceed 0.2 for all n & b), equation 14 reduces to ≠ 0 I b bn( )exp( )−
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Solution for equation 15 is 
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For complex roots to occur, the denominator of equation 16 must be negative. But, since 
for our values , the term  needs to be miniscule (note that I b bn( )exp( )− ≥1 k D

2 2λ
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ω λ ). But since  is close to the bunch diameter, very long wavelengths are 

required to satisfy instability condition. This cannot happen due to the small radial 
dimension of the bunches.  

λD

Now consider the ω ≈ n eΩ case in equation 14. Choosing only one n number, solution is 
straightforward, 
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that can affect the RHIC E-Cooler. However, these values must be substituted into 
equation 12 to first compute the necessary values of the plasma density and then calculate 
the temperature anisotropy needed for instability (drift and rotation frequencies can still 



be neglected; slow compared to the interaction). Doing yields necessary conditions for 
instability to be 
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Conditions set by equation 18, can be met in the RHIC E-Cooler. However, equation 17 
has a required critical density (that can trigger this instability), which is a factor of over 
70 above the electron density in the RHIC E-Cooler. 
 
In the literature, instabilities due to temperature anisotropy5,16,17,18 were examined due to 
concern of their occurrence in mirror devices as a consequence of their inherent velocity 
space loss cone. Even though these instabilities were analyzed using kinetic theory, cases 
where the wave phase velocity was much larger than thermal velocity were referred to as 
“hydrodynamic instabilities.”   
 
V Discussion 
 
In conclusion, RHIC E-Cooler is stable against the only microinstability that can develop 
in one interaction period. Within the limits of plasma kinetic theory, confidence in the 
obtained results should be fairly high since they are consistent with other results that can 
be found in the literature regarding instabilities due to temperature anisotropy5,16,17,18. In 

these papers, γ ≈ Ωe  (occurring at ), and conditions for stability are k e= −ρ 1 T
T

||
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<
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2

, or a 

condition linking , the ratio of plasma to magnetic field pressure, to the temperature 

anisotropy to be 

β∗

T
T
|

||

⊥
∗− >1 1

2β
. Given the geometrical differences (analyzed mirror 

devices have comparable lengths and diameters), the results obtained in this note are 
plausible.  
 
Past analysis19 of instabilities due to ion-electron oscillations cannot occur, since the 
calculation involves some frequencies that are too low to have an effect during the 1 nsec 
interaction time. Similarly, instabilities due to secondary particles should not be of 
concern during the 1 nsec interaction time (Budker-Buneman and beam plasmas have 
frequencies that are a small fraction of the plasma frequency). 
 
In the future, it may be worthwhile to perform a similar MHD analysis, and to consider 
the effect of ballistic modes. The latter may occur due to high excitation rate (repeated 
interaction between electron and ion bunches), echoes might have the potential to cause 
some problems, even though unstable echoes were never observed or even predicted to 
occur. However phase mixing between echoes [arising from ballistic modes] and other 



perturbed elements in the distribution function might lead to instabilities. But, this case is 
radically different from anything that was previously looked at; a completely new theory 
must be developed.  
 
Finally some general comments regarding validity and experimental verification of 
pertinent theoretical analysis of various instabilities. Stability has been one of the most 
controversial topics in plasma physics research. Consequently, no results should be 
viewed as certain. Part of the reason for skepticism stems from the experience of the U.S. 
fusion community had with regard to stability of stellarators. During the 1950’s, an 
anomalously high rate of particle loss (referred to as particle pumpouts) was observed in 
the Princeton stellarators. This phenomenon became a catalyst for major developments in 
plasma kinetic theory, since plasma microinstabilities were believed to be the reason for 
the pumpouts. In the 1970’s, it was discovered that the reason for the pumpouts was poor 
magnetic field quality of the early stellarators, which caused particles to drift out. With 
greatly improved computer codes, a new generation of stellarators was built in the 1970’s 
that matched the performance of comparable tokamaks. Much worst was the experience 
of the EBIS community20, where poor performance had being blamed on plasma 
instabilities rather than seeking simpler explanations like misalignment.      
 
Nevertheless, there were also great achievements like those in the subfield of plasma 
physics that dealt with stability of magnetic mirror devices. Both MHD and kinetic 
theories successfully explained major macro and microinstabilities, for which remedies 
were eventually found. Present analysis is similar to what was done in mirror devices. 
 
Much of the prior work on stability analysis of electron beam coolers involved space 
charge ion-electron oscillations, or relative oscillations of ion and electron columns. 
Those problems were treated mathematically as classical anharmonic oscillators without 
using two time scale approximations. Although correct results might have still been 
generated, the computations have a potential flaw. In a book by Osrzag and Bender 
(based on works by Kolmogoroff, Cole, as well as Bogoliubov & Mitroposky) on this 
topic, it is shown that time secularities can appear due to a mathematical art-effect in 
perturbation theory, where a lower order term can drive a higher order equation at the 
resonant frequency. To ensure that this does not occur, a two time scale analysis must be 
performed. Additionally, poor correlation21 was reported to exist between stability 
analysis and experimental results.   
 
V Conclusion 
 

1. Within the limits of plasma kinetic theory, the only microinstability that can 
potentially occur is one due to anisotropy of the electron temperature in a 
magnetic field. However, the instability has a density threshold that electron 
density is a factor of over 70 larger than that of the RHIC E-Cooler. 

2. A comparable macroscopic theory analysis, and/or a novel theory that includes 
plasma echoes may be worth pursuing.   

3. It might be worthwhile to revisit prior work. 
 



Acknowledgement 
 
The author is thankful to Ilan Ben-Zvi for suggesting this problem. 
 
 
References 
 

1. Computed from values provided by Ilan Ben-Zvi private 
communication 2003. 

2. A. A. Vlasov, J. Phys. (USSR) 9, 25 (1945). 
3. L. D. Landau, J. Phys. (USSR) 10, 25 (1946). 
4. E. G. Harris, J. Nucl. Energy, Part C 2, 138 (1961). 
5. E. G. Harris, Phys. Rev. Letters, 2, 34 (1959). 
6. A. Hershcovitch and P. A. Politzer, Phys. Rev. Letters, 36, 1365 

(1976). 
7. A. Hershcovitch and P. A. Politzer, Phys. Fluids, 22, 249 (1979). 
8. A. Hershcovitch, Physica Scripta T71, 34 (1996). 
9. A. Hershcovitch, Rev. Sci. Instrum. 69, 668 (1998). 
10. B. D. Fried and S. C. Conte, The Plasma Dispersion Function, 

Academic Press New York (1961). 
11. R.W. Landau and S. Cuperman, J. Plasma Physics 6, 495 (1971). 
12. B. D. Fried, C. L. Hedrick, and J. McCune, Phys. Fluids 11, 249 

(1968). 
13. C. T. Dum and T. H. Dupree, Phys. Fluids 13, 2064 (1970). 
14. A. B. Mikhailovskii, Theory of Plasma Instabilities Vol. I, 

Consultant Bureau, New York (1974). 
15. A. Hershcovitch, Parallel Ion Energy Spread Due to Interaction 

with an Electron Bunch in the RHIC Electron Beam Cooling 
Solenoid, CA/AP Note # 102, June 2003. 

16. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959). 
17. H. P. Furth, Phys. Fluids 6, 48 (1963) 
18. M. N. Rosenbluth, Microinstabilities Plasma Physics, IAEA, 

Vienna (1965). 
19. V. Parkhomchuk and I. Ben-Zvi, C-A/AP note # 47 April 2001. 
20. See for example panel discussion, N. Rostoker, moderator, in 

“Proceedings of International Symposium on Electron Beam Ion 
Sources and Their Applications”, A. Hershcovitch, Editor, 
American Institute of Physics Conference Proceedings No. 188, 
American Institute of Physics, New York, 1989, pp. 197 – 187. 

21. J. Bosser, in a talk given at the 7th EBIS symposium in 
Gelnhausen, Germany and private 1996.    

 
 
 
  


	blank template cover.pdf
	C-A/AP/#130
	January 2004
	Brookhaven National Laboratory


